
Terraforming Cyberspace
Jeffrey M. Bradshaw, Niranjan Suri, Maggie Breedy, Alberto Cañas, Robert Davis, Kenneth Ford,

Robert Hoffman, Renia Jeffers, Shri Kulkarni, James Lott, Thomas Reichherzer, and Andrzej Uszok
Institute for Human and Machine Cognition (IHMC)

40 South Alcaniz Street
Pensacola, FL 32501

850-202-4400
{jbradshaw, nsuri, mbreedy, acanas, rdavis , kford, rhoffman, rjeffers, skulkarni, jlot t, treichhe, auszok}@ai.uwf.edu

INTRODUCTION
During the 1940s, under the pseudonym of Will Stewart, Jack
Williamson published a series of fictional stories describing a
process for attaching atmospheres to planets in order to make
them capable of sustaining life. ‘Terraforming,’ the term he
coined for this activity was first picked up by other science fiction
writers. Eventually, it captured the imagination of a small but
zealous core of scientists, space advocacy groups, and segments
of the public who began focusing on Mars as the most likely tar-
get for transformation and eventual colonization. The May 1991
issue of Life Magazine ran a cover story describing a 150-year
plan for a Martian metamorphosis through orbiting solar reflectors
that would melt polar water, surface factories that would produce
needed gases in the atmosphere, and the ultimate planting of
hearty plant species as the temperature approached the freezing
point of water (figure 1). Today many articles, books, and Web
sites continue to develop the theme.

Like pre-terraformed Mars for humans, cyberspace is currently a
lonely, dangerous, and relatively impoverished place for software
agents (figure 2). Though promoted as collaborative, agents do
not easily sustain rich long-term peer-to-peer relationships, let
alone any semblance of meaningful community involvement.
While their features for secure reliable interaction are often
touted, there is no social safety net to help agents out when they
get stuck, or worse yet to prevent them from setting the network
on fire when they go off the deep end. Despite the fact that agent
designers want them to communicate at an “almost human” level,
agents are cut off from most of the world in which humans oper-
ate. Though capable of self-directed mobility, they are hobbled by
severe practical restrictions on when and where they can go. Os-
tensibly endowed with autonomy, an agent’s very existence can

be terminated unceremoniously by the first passerby who happens
to find the power switch.

Figure 2. Agent life on the wire is “solitary, poor, nasty, brutish,
and short.” (Brooklyn Bridge workers, 1914, courtesy Collections

of the Municipal Archives of the City of New York)

In consequence of these (and other) limitations, most of today’s
agents are designed for “solitary, poor, nasty, brutish, and short”
lives of narrow purpose in a relatively bounded and static compu-
tational world.1 With rare exception, today’s agents are not de-
ployed in critical, long-lived, secure, or high-risk tasks, or on mis-
sions requiring widespread agent migration, or the collaboration
of large numbers of agents interacting in complex, unpredictable
ways.

Progress in some of these limitations necessarily awaits the results
of ongoing research in traditional approaches to agent autonomy,

1 Thomas Hobbes’ entire passage is worth reproducing here: “Of

the natural condition of Mankind, as concerning their felicity,
and misery, whatsoever therefore is consequent to a time of war,
where every man is enemy to every man; the same is conse-
quent to the time, wherein men live without other security, than
what their own strength, and their own invention shall furnish
them withal. In such condition, there is no place for industry,
because the fruit thereof is uncertain; and consequently no cul-
ture of the earth, no navigation, nor use of the commodities that
may be imported by sea; no commodious building, no instru-
ments of moving and removing such things as require much
force; no knowledge of the face of the earth, no account of time,
no arts, no letters, no society; and which is worst of all, contin-
ual fear and danger of violent death; and the life of people, soli-
tary, poor, nasty, brutish, and short” (Leviathan, i . xiii. 9). Does
Hobbes’ general argument for the institution of government as a
check on the self-serving tendency of individuals find a more
natural application to artificial agents than to humans?

Figure 1. Terraforming Mars.

collaborativity, adaptivity, and mobility. However, we argue that
focusing greater attention not only on making agents smarter and
stronger but also on making the environment in which they oper-
ate more capable of sustaining various forms of agent life and
civilization would simplify some of these problems. A modest
terraforming effort would enable not only intelligent agents but
also the agent-equilvalent of dogs, insects, and chickens to survive
and thrive in cyberspace.

Fortunately, the basic infrastructure with which we can begin the
terraforming effort is becoming more available. Designed from
the ground up to exploit next-generation Internet capabilities,
grid-based approaches aim to provide a universal source of dy-
namically pluggable, pervasive, and dependable computing
power, while guaranteeing levels of security and quality of service
that will make new classes of applications possible [14]. By the
time these approaches become mainstream for large-scale applica-
tions, they will also have migrated to ad hoc local networks of
very small devices [16].
The CoABS Grid, based on Sun’s Jini services and developed at
Global InfoTek (GITI) under DARPA’s Control of Agent-Based
Systems (CoABS) program, arguably provides the most success-
ful and widely used infrastructure to date for the large-scale inte-
gration of heterogeneous agent frameworks with object-based
applications, and legacy systems [9; 21]. Over the next few years,
we expect a confluence of this effort with those of the larger com-
putational grid community (http://www.gridforum.org). The Java
Agent Services Expert Group (JAS, JSR 87), under the auspices
of Sun’s Java Community Process (http://www.java-agent.org),
the OMG Agent PSIG (http:// www.objs.com /agent/), and the
FIPA Abstract Architecture Working Group (http:// www.fipa.org
/activities /architecture.html) are similarly at work on essential
contributions to interoperable agent infrastructure.

However, we must go far beyond these current efforts to enable
the vision of terraforming cyberspace (Figure 3). Current infra-
structure implementations typically provide few resource guaran-
tees and no incentives for agents and other components to look
beyond their own selfish interests. At a minimum, future infra-
structure must go beyond the bare essentials to provide pervasive
life support services (relying on mechanisms such as orthogonal
persistence and strong mobility [30; 31]) that help ensure the sur-
vival of agents that are designed to live for many years. Beyond
the basics of individual agent protection, long-lived agent com-
munities will depend on legal services, based on explicit policies,
to ensure their rights and help them fulfill their obligations. Be-
nevolent social services will also eventually be provided to offer
proactive help when needed. Although some of these elements of
terraforming for agents exist in embryo within specific agent sys-
tems, their scope and effectiveness has been limited by the lack of
underlying support at the platform level.

Here we describe how we are working toward extending current
agent infrastructure to provide support for rudimentary initial
“terraforming” services. We will first describe NOMADS life
support services. Then we will show how we are exploring the
basics of legal and social services through the use of KAoS do-
main and policy management models and mechanisms. Finally,
we will sketch our view of complementary principles and capabil-
itie s that will be necessary to “cyberform terraspace.”

Figure 3. Elements of terraforming for software agents.

NOMADS LIFE SUPPORT SERVICES
NOMADS is the name we have given to the combination of
Aroma, an enhanced Java-compatible Virtual Machine (VM),
with its Oasis agent execution environment [30; 31]. In its current
version, it is designed to provide basic life support services ensur-
ing agent environmental protection of two kinds:

• assurance of availability of system resources, even in the face
of buggy agents or denial-of- service attacks;

• protection of agent execution state, even in the face of unan-
ticipated system failure.

Our approach for life support services has thus far been two-
pronged: enabling as much protection as possible in standard Java
VMs while also providing NOMADS and the enhanced Aroma
VM for those agent applications that require it.

For agents running in standard Java VMs, we create software-
based Guards, which enforce policies by relying on the capabili-
ties of the Java 2 security model (including permissions and privi-
leged code wrappers) and the Java Authentication and Authoriza-
tion Service (JAAS). In contrast to other implementations of Java
security, our enhanced JAAS-based approach allow revocation of
access permissions under many circumstances as well as the
granting of different permissions to different instances of agents
from the same code base. For policies that go beyond simple ac-
cess-based permissions (e.g., obligations, registration policies,
conversation policies), Guards implement additional auxiliary
KAoS management and enforcement capabilities as required.

Unfortunately, some kinds of protection cannot be provided by
merely bolting on new services on top of standard Java VMs.
Although Java is currently the most popular and arguably the most
mobility-minded and security-conscious mainstream language for
agent development, current versions fail to address many of the
unique challenges posed by agent software. While few if any re-
quirements for Java mobility, security, and resource management
are entirely unique to agent software, typical approaches used in
non-agent software are usually hard-coded and do not allow the
degree of on-demand responsiveness, configurability, extensibil-
ity, and fine-grained control required by agent-based systems.

For agents running in the Aroma VM, we can create a guarded
environment that is considerably more powerful in that it not only
provides the standard Java and KAoS enforcement capabilities
described above, but also supports access revocation under all
circumstances, dynamic resource control and full state capture on
demand for any Java agent or service.

Bare Essentials

Life Support Serv-
ices

Legal Services

Social Services

Looking out

for #1

Environmental

protection

Justice

Welfare

Concern Benefit

Get what you can take

Get enough to survive

Get what you deserve

Get help when needed

Service
Level

Protection of agent resources. To fully appreciate the resource
control features of Aroma and NOMADS, some understanding of
the current Java security model is needed. Early versions of Java
relied on the sandbox model to protect mobile code from access-
ing dangerous methods. In contrast, the security model in the cur-
rent Java 2 release is permission-based. Unlike the original “all or
nothing” approach, Java applets and applications can be given
varying amounts of access to system resources. Unfortunately,
current Java mechanisms do not address the problem of resource
control. For example, while it may be possible to prevent a Java
program from writing to any directory except /tmp (an access
control issue), once the program is given permission to write to
the /tmp directory, no further restrictions are placed on the pro-
gram’s I/O (a resource control issue). As another example, there
is no way in the current Java implementation to limit the amount
of disk space the program may use or to control the rate at which
the program is allowed to read and write from the network.

Resource control is important for several reasons. First, without
resource control, systems and networks are open to denial of serv-
ice attacks through resource overuse. Second, resource control
lays the foundation for quality-of-service guarantees. Before any
quality-of-service guarantees can be made about the availability of
resources, the system must be able to limit resource utilization of
other tasks (which is currently not possible in the Java environ-
ment). Third, resource control presupposes resource accounting,
which allows the resources consumed by some component of a
system (or the overall system) to be measured for either billing or
monitoring purposes. Monitoring resource utilization over time
allows the detection of abnormal behavior as part of the system.

Finally, the availability of resource control mechanisms in the
environment simplifies the task of developing systems for re-
source-constrained situations. Consider the task of developing and
deploying a new system requiring concurrent execution and re-
source sharing with existing systems. In such scenarios, the de-
veloper of the new system often has to limit the resource utiliza-
tion of the new system in order to not interfere with the operations
of the existing systems (for example, maybe the new system can
only use 500 Kb/sec of network bandwidth because the rest of the
available network bandwidth is required by the existing systems).
Providing such a guarantee requires significant effort on behalf of

the developer of the new system. However, if the underlying envi-
ronment were to provide resource control mechanisms, then the
new system could simply make a request to the underlying envi-
ronment, which can then provide the necessary guarantees.

Aroma currently provides a comprehensive set of resource con-
trols for CPU, disk, and network (Figure 4). The resource control
mechanisms allow limits to be placed on both the rate and quan-
tity of resources used by Java threads. Rate limits include CPU
usage, disk read rate, disk write rate, network read rate and net-
work write rate. Rate limits for I/O are specified in
bytes/millisecond. Quantity limits include disk space, total bytes
written to disk, total bytes read from the disk, total bytes written
to the network, and total bytes read from the network. Quantity
limits are specified in bytes. One of the major benefits of the
Aroma VM is that resource controls are transparent to the Java
code executing inside the VM. In particular, the enforcement of
the resource limits does not require any modifications to the Java
code. Also, the existence of rate limits (and their enforcement) is
completely transparent to the Java component or service.

CPU resource control was designed to support two alternative
means of expressing the resource limits. The first alternative is to
express the limit in terms of bytecodes executed per millisecond.
The advantage of expressing a limit in terms of bytecodes per unit
time is that given the processing requirements of a thread, the
thread’s execution time (or time to complete a task) may be pre-
dicted. Another advantage of expressing limits in terms of byte-
codes per unit time is that the limit is system and architecture
independent. The second alternative is to express the limit in
terms of some percentage of CPU time, expressed as a number
between 0 and 100. Expressing limits as a percentage of overall
CPU time on a host provides better control over resource con-
sumption on that particular host.

Rate limits for disk and network are expressed in terms of bytes
read or written per millisecond. If a rate limit is in effect, then I/O
operations are transparently delayed if necessary until such time
that allowing the operation would not exceed the limit. Threads
performing I/O operations will not be aware of any resource limits
in place unless they choose to query the VM.

Control:
 Read/Write Rates
 Read/Write Quantities
 Space Used

NetworkDisk

CPU Memory

Control:
 Read/Write Rates
 Read/Write Quantities

Control:
 Usage Rate
 Duration

Control:
 Space Used
 Allocation Rate

Aroma VM

Java Service / Component

T
h
r
e
a
d

T
h
r
e
a
d

1.1.1.1.1.1 Figure 2: Resource Controls in the Aroma VM

Quantity limits for disk and network are expressed in terms of
bytes. If a quantity limit is in effect, then the VM throws an ex-
ception when a thread requests an I/O operation that would result
in the limit being exceeded.

In agent environments, several uses of the NOMADS-based re-
source control mechanisms are possible. First, the KAoS Domain
Manager (explained below) and the VM-level Guard will be able
to utilize the resource control capabilities in order to place limits
on the resources consumed by services and components running
within the Aroma VM. The Guard will be able to vary the re-
source limits to accommodate changes in policy or level of service
guarantees. The Guard will also be able to take advantage of the
resource accounting capabilities to measure and report back on the
resources consumed by services and components and, if policy
permits, to look for patterns of resource abuse that might signal
denial-of-service attacks and take autonomous action to reduce
resources to the attacker accordingly.

We are working with Sun Microsystems Laboratories to help in-
corporate resource control capabilities into commercial Java Vir-
tual Machines. Incorporating Aroma-like resource control mecha-
nisms into Java will enable Agent systems and a wide-range of
other applications to run in more secure environments.

Protection of agent state. With respect to protection of agent state,
we need a way to save the entire state of the running agent or
component, including its execution stack, anytime so it can be
fully restored in case of system failure or a need to temporarily
suspend its execution. The standard term describing this process is
checkpointing. Over the last few years, the more general concept
of transparent persistence (sometimes called “orthogonal persis-
tence”) has also been developed by researchers at Sun Microsys-
tems and elsewhere [20]. The goal of this research is to define
language-independent principles and language-specific mecha-
nisms by which persistence can be made available for all data,
irrespective of type. Ideally, the approach would not require any
special work by the programmer (e.g., implementing serialization
methods in Java or using transaction interfaces in conjunction
with object databases), and there would be no distinction made
between short-lived and long-lived data.

The Aroma VM has been enhanced with the capability to capture
the execution state of any running Java program. Current com-
mercial Java VMs do not provide any mechanisms to capture the
execution state of a Java program. The state capture mechanism is
used to provide strong mobility for NOMADS agents, which al-
lows them to request mobility no matter at what point they are in
running their code. Without strong mobility, the code for a mobile
agent needs to be structured in a special way to accommodate
migration operations. Strong mobility allows agents to be mobile
without any special structural requirements (see discussion of
resource redirection below).

Promising work has been done on translating agents that use
strong mobility into agents that use weak mobility
xADDINENRfu. These approaches work well for agents that are
single threaded and do not require asynchronous state capture. By
asynchronous, we mean a request to capture state that is generated
by an external unexpected event or interrupt. The Aroma VM
supports capturing of execution state of both multi-threaded
agents and allows external events to trigger state capture opera-
tions.

We have used the state capture features of NOMADS extensively
for agents requiring anytime mobility, whether in the performance
of some task or for immediate escape from a host under attack or
about to go down (we call this scenario “scram”). We have also

put these features to use for transparent load-balancing and forced
code migration on demand in distributed computing applications
[32]. To support transparent persistence for agents and agent in-
frastructure components, we are implementing scheduled and on-
demand checkpointing services that will protect agent execution
state, even in the face of unanticipated system failure.

Forced migration of agents would fail if the agent were using
local resources (such as files or network endpoints) on the original
host. To solve this problem, we have also implemented transpar-
ent redirection of resource access for files and TCP sockets. For
example, network redirection is provided through a mechanism
called Mockets (mobile sockets) [26], which allow an agent to
keep a TCP socket connection open while moving from host to
host. Resource redirection is an important requirement to achieve
full forced migration of agents.

KAoS LEGAL AND SOCIAL SERVICES
Terraforming cyberspace involves more than regulation of com-
puting resources and protection of agent state. As the scale and
sophistication of agents grow, and their lifespan becomes longer,
agent developers and users will want the ability to express com-
plex high-level constraints on agent behavior within a given envi-
ronment. It seems inevitable that productive interaction between
agents in long-lived communities will also require some kind of
legal services, based on explicit enforceable policies, to ensure
their rights and help them fulfill their obligations. Over time, it
seems likely that benevolent social services will also eventually
evolve to offer help with individual agent or systemic problems.

In both legal and social services arenas, it is clear that preventive
initiatives are nearly always superior to after-the-fact remedies, as
the following verse by Joseph Malins illustrates:

‘Twas a dangerous cliff, as they freely confessed,

Though to walk near its crest was so pleasant;

But over its terrible edge there had slipped

A duke and full many a peasant.

So the people said something would have to be done,

But their project did not at all tally;

Some said, “Put a fence around the edge of the cliff,”

Some, “An ambulance down in the valley.”

We are basing our approach on the assumption that preventive
policy-based ‘fences’ can complement and enhance after-the-fact
remedial ‘ambulance in the valley’ mechanisms. The policies
governing some set of agents aim to describe expected behavior in
sufficient detail that deviations can be easily anticipated or de-
tected. At the same time, related policy support services help
make compliance as easy as possible. Complementing these pol-
icy support services, various enforcement mechanisms operate as
a sort of ‘cop at the top of the cliff’ to warn of potential problems
before they occur. When, despite all precautions, an accident hap-
pens remedial services are called as a last resort to help repair the
damage. In this manner, the policy-based fences and the after-the-
fact ambulances work together to ensure a safer environment for
individual agents and the communities in which they operate.

Overview of policy-based agent management. Policy-based man-
agement approaches have grown considerably in popularity over
the last few years. Unlike previous versions, the Java 2 security
model defines security policies as distinct from implementation
mechanism. Access to resources is controlled by a Security Man-
ager, which relies on a security policy object to dictate whether

class X has permission to access system resource Y. The policies
themselves are expressed in a persistent format such as text so
they can be viewed and edited by any tools that support the policy
syntax specification. This approach allows policies to be config-
urable, and relatively more flexible, fine-grained, and extensible.
Developers of applications no longer have to subclass the Security
Manager and hard-code the application’s policies into the sub-
class. Programs can make use of the policy file and the extensible
permission object to build an application whose security policy
can change without requiring changes in source code.

The basic policytool Java currently provides, assists users in edit-
ing policy files. However, to be useful and usable in realistic set-
tings, policy-based administration tools should contain domain
knowledge and conceptual abstractions to allow applications de-
signers to focus their attention more on high-level policy intent
than on the details of implementation. Moreover, while Java pro-
vides only for static policies, critical agent applications will re-
quire tools for the monitoring, visualization, and dynamic modifi-
cation of policies at runtime.

The scope of policy-based agent management includes typical
security concerns such as authorization, encryption, access and
resource control policies, but also goes beyond these in signifi-
cant ways. For example, KAoS pioneered the concept of agent
conversation policies [5; 17]. Teams of agents can be formed,
maintained, and disbanded through the process of agent-to-agent
communication using an appropriate semantics [8; 10; 33]. Con-
versation policies assure coherence in the adoption and discharge
of team commitments by heterogeneous agents of different levels
of sophistication [5; 6]. These conversation policies are designed
to assure robust behavior and to keep computational overhead for
team maintenance to an absolute minimum [17; 19; 29]. In addi-
tion to conversation policies, we are in the process of developing
representations and enforcement mechanisms for mobility policies
[23], domain registration policies, and various forms of obliga-
tion policies (see below).

There are some important differences between the objectives of
our approach and that of others working to encourage and enforce
security, robustness, and cooperativity constraints among commu-
nities of agents. First, unlike most multi-agent coordination envi-
ronments, the approach does not assume that we are dealing with
a homogeneous set of agents written within the same agent
framework. With respect to the environmental protection, legal,
and social services functions provided, we aim insofar as possible
to put KAoS and non-KAoS agents on the same footing—with
little or no modification to the agents themselves required. In fact,
because our services aim to protect against the negative effects of
buggy or malicious agents, we have to make sure that the policy-
management mechanisms are designed to work even when agents
are trying to work against them. Second, insofar as possible the
framework needs to support dynamic runtime policy changes, and
not merely static configurations determined in advance. Third, the
framework needs to be extensible to a variety of execution plat-
forms with different enforcement mechanisms—initially Java and
Aroma—but in principle any platform for which a Guard may be
written. Fourth, the framework must be robust in continuing to
manage and enforce policy in the face of attack or failure of any
combination of components. Finally, we recognize the need for
easy-to-use policy-based administration tools capable of contain-
ing domain knowledge and conceptual abstractions that let appli-
cation designers focus their attention more on high-level policy
intent than on implementation details. Such tools require powerful
graphical user interfaces for monitoring, visualizing, and dynami-
cally modifying policies at runtime.

In short, the policy management framework must ensure maxi-
mum freedom and heterogeneity of the agents and non-
intrusiveness of the enforcement mechanisms, while respecting
the bounds of human-determined constraints designed to ensure
selective conformity of behavior.

DAML-based policy representation. In principle, developers could
use a variety of representations to express policies. At one ex-
treme, they might write these policies in some propositional or
constraint representation. At the other extreme lie a wide variety
of simpler schemes, each of which gives up some types of expres-
sivity. Several considerations affect the choice of representation
for a particular application, including composability, computabil-
ity, efficiency, expressivity, and amenability to various sorts of
analysis and inference.

With funding from the DARPA CoABS program, we have devel-
oped KAoS Policy Ontologies (KPO). These ontologies are ex-
pressed in DAML (http://www.daml.org) and work in conjunction
with a set of KAoS policy-management services.

Designed to support the emerging “Semantic Web,” DAML is the
latest in a succession of Web markup languages [2]. HTML, the
first Web markup language, allowed users to markup documents
with a fixed set of formatting tags for human use and readability.
XML allows users to add arbitrary structures to their documents
but expresses very little directly about what the structures mean.
RDF (Resource Description Format) encodes meaning in sets of
subject-verb-object triples, where elements of these triples may
each be identified by a URI (typically a URL).

DAML extends RDF to allow users to specify ontologies com-
posed of taxonomies of classes and inference rules. These ontolo-
gies can be used by people for a variety of purposes, such as ena-
bling more accurate or complex Web searches. Agents can also
use semantic markup languages to understand and manipulate
Web content in significant ways; to discover, communicate, and
cooperate with other agents and services; or, as we outline in this
paper, to interact with policy-based management and control
mechanisms.

The current KPO specification defines basic ontologies for actors,
actions, entities that are the targets of actions (e.g., computing
resources), places, policies, and policy conditions. We have ex-
tended these ontologies to represent simple atomic Java permis-
sions, as well as more complex NOMADS, and KAoS policy con-
structs. It is expected that for a given application, the ontologies
will be further extended with additional classes, individuals, and
rules. Individual policies will be put into force as required.
Through various property restrictions, a given policy can be vari-
ously scoped, for example, either to individual agents, to agents of
a given class, to agents belonging to an intensionally- or exten-
sionally-defined groups (e.g., a domain or team), or to agents run-
ning in a given physical place or computational environment (e.g.,
VM).

The actor ontology distinguishes between agents (that generally
can only perform ordinary actions) and Domain Managers,
Guards, and authorized human users, who may variously be per-
mitted or obligated to perform certain policy actions, such as ap-
proval and enforcement. The policy ontology distinguishes be-
tween authorizations (i.e., constraints that permit or forbid some
action) and obligations (i.e., constraints that require some action
to be performed, or else serve to waive such a requirement) [12].
The KAoS Policy Ontologies are intended for a variety of pur-
poses. One obvious application is during inference relating to
various forms of online or offline analysis. For example, changes

or additions to policies in force, or a change in status of an actor
(e.g., an agent joining a new domain or moving to a new host)
require logical inference to determine first of all which policies
are in conflict and second how to resolve these conflicts [24]. We
have implemented a general-purpose algorithm for policy conflict
detection and harmonization whose current results promise a sur-
prising degree of efficiency and scalability.2 The ontologies may
also be used in policy disclosure management (see below), reason-
ing about future actions based on knowledge of policies in force,
and in assisting users of policy specification tools to understand
the implications of defining new policies given the current context
and the set of policies already in force.

KAoS policy management architecture. Figure 5 shows the major
components of the KAoS policy management architecture.

The KAoS Policy Administration Tool (KPAT), a graphical user
interface to policy management functionality, has been developed
to make policy specification, revision, and application easier for
administrators without specialized training. Using KPAT, an
authorized user may make changes over the Web to agent policy.
Alternatively, trusted components such as Guards may, if author-
ized, propose policy changes autonomously based on their obser-
vation of system events.

Groups of agents are structured into agent domains and subdo-
mains to facilitate policy administration. A given domain can
extend across host boundaries and, conversely, multiple domains
can exist concurrently on the same host. Depending on whether
policy allows, agents may become members of more than one
domain at a time.

2 A detailed description our policy conflict detection and resolu-

tion process is currently being prepared for publication.

KAoS Domain Managers (DM) act in the role of policy decision
points to determine whether agents can join their domain and for
policy conflict resolution.3 The DM is responsible for ensuring
policy consistency at all levels of a domain hierarchy, for notify-
ing Guards about changes in policy or other aspects of system
state that may affect their operation, and for storing state in the
directory service. Because DM’s are stateless, one DM instance
may serve multiple domains or conversely, a single large domain
may require several instances of the DM to achieve scalable per-
formance.

Policies are stored within ontologies in the directory service (DS).
Although DM’s normally provide the limited public interface to
the DS, private interfaces may allow the DS to be accessed by
other authorized entities in accordance with policy disclosure
strategies [27]. For example, trusted agents may be allowed to
perform queries concerning domain policies in advance of submit-
ting a registration request to a new domain. Because the policies
in the directory service are expressed declaratively, some forms of
analysis and verification can be performed in advance and offline,
permitting execution mechanisms to be as efficient as possible.

Guards interpret policies that have been approved by the DM and
enforce them with appropriate native enforcement mechanisms.
While KPAT and the DM, and the Guards are intended to work
identically across different agent platforms (e.g., DARPA CoABS
Grid, Cougaar, Objectspace Voyager) and execution environments
(e.g., Java VM, Aroma VM), enforcement mechanisms are neces-
sarily designed for a specific platform and execution environment.
Our approach enables policy uniformity in domains that might be
simultaneously distributed across multiple platforms and execu-

3 In the current implementation, DM’s delegate inference about

policy decisions to the directory service, which incorporates a
DAML-based inference engine.

Native

Enforc-
ersNative

En-
forcers

Platform 2

Guard

Servlet

KAoS

Domain

Manager(s)

Agent

Directory Service

Agent

Agent

Agent

Ag
ent

Agent

Event-driven
policy changes

KAoS Policy

Admin

Tool (KPAT)

Guard

Guard

Platform 1 Platform 3

tion environments, as long as semantically equivalent monitoring
and enforcement mechanisms are available. Under these condi-
tions, it follows that behavior of agents written using different
platforms and running in different execution environments can be
kept consistent through the use of these policy-based mechanisms.
Because policy analysis and policy conflict resolution normally
take place prior to the policy being given to the Guard for en-
forcement, the operation of the Guards and enforcement mecha-
nisms can be lightweight and efficient.

In applications to date, we have relied on several different kinds
of enforcement mechanisms. Enforcement mechanisms built into
the execution environment (e.g., OS or Virtual Machine level
protection) are the most powerful sort, as they can generally be
used to assure policy compliance for any agent or program run-
ning in that environment, regardless of how that agent or program
was written. For example, the Java Authentication and Authoriza-
tion Service (JAAS) provides methods that ties access control to
authentication. In KAoS, we have developed methods based on
JAAS that will allow policies to be scoped to individual agent
instances rather than just to Java classes. Currently, JAAS can be
used with Java VMs; in the future it should be possible to use
JAAS with the Aroma VM as well. As described above, the
Aroma VM provides, in addition to Java VM protections, a com-
prehensive set of resource controls for CPU, disk and network.
The resource control mechanisms allow limits to be placed on
both the rate and the quantity of resources used by Java threads.
Guards running on the Aroma VM can use the resource control
mechanisms to provide enhanced security (e.g., prevent or disable
denial-of-service attacks), maintain quality of service for given
agents, or give priority to important tasks.

A second kind of enforcement mechanism takes the form of ex-
tensions to particular agent platform capabilities. Agents that par-
ticipate in that platform are generally given more permissions to
the degree they are able to make small adaptations in their agents
to comply with policy requirements. For example, in applications
using the DARPA CoABS Grid, we have defined a KAoSAgen-
tRegistrationHelper to replace the default GridAgentRegistra-
tionHelper. Grid agent developers need only replace the class
reference in their code to participate in agent domains and be
transparently and reliably governed by policies currently in force.
On the other hand, agents that use the default GridAgentRegistra-
tionHelper do not participate in domains and as a result they are
typically granted very limited permissions in their interactions
with domain-enabled agents.

Finally, a third type of enforcement mechanism is necessary for
obligation policies. Because obligations cannot be enforced
through preventive mechanisms, enforcers can only monitor agent
behavior and determine after-the-fact whether a policy has been
followed. For example, if an agent is required by policy to report
its status every 5 minutes, an enforcer might be deployed to watch
whether this is in fact happens, and if not to either try to diagnose
and fix the problem, or alternatively take appropriate sanctions
against the agent (e.g., reduce permissions or publish the observed
instance of noncompliance to an agent reputation service).

Applications and benefits of policy-based approach. An example
of the application of KAoS, NOMADS, and Java security policies
and mechanisms can be found in our work on the DARPA Co-
ABS-sponsored Coalition Operations Experiment (CoAX) (http://
www.aiai.ed.ac.uk /project/ coax/) [1]. CoAX models military
coalition operations and implement agent-based systems to mirror
coalition structures, policies, and doctrines. The project aims to
show that the agent-based computing paradigm offers a promising
new approach to dealing with issues such as

_ the interoperability of new and legacy systems,

_ the implicit nature of coalition policies,

_ security, and

_ recovery from attack, system failure, or service withdrawal.

KAoS provides mechanisms for overall management of coalition
organizational structures represented as domains and policies,
while NOMADS provides strong mobility, resource management,
and protection from denial-of-service attacks for untrusted agents
that run in its environment.

The combination of the use of libraries of pre-analyzed policy
sets, separate policy decision and conflict resolution mechanisms,
and efficient policy enforcement mechanisms make the use of
policy-based administration tools maximally effective and per-
formant. A policy-based approach has the additional advantages
of reusability, efficiency, context sensitivity, and verifiability:

Reusability. Policies encode sets of useful constraints on agent or
component behavior, packaging them in a form where they can be
easily reused as the occasion requires. By reusing policies when
they apply, we reap the lessons learned from previous analysis
and experience while saving ourselves the time it would have
taken to reinvent them from scratch.

Efficiency. In addition to lightening the application developers’
workload, explicit policies can sometimes increase runtime effi-
ciency. For example, to the extent that policy conflict resolution
and conversion of policy to a form that can be used by appropriate
enforcement mechanisms can take place in advance, overall per-
formance can be increased.

Context-sensitivity. Explicit policy representation improves the
ability of agents, components, and platforms to be responsive to
changing conditions, and if necessary reason about the implica-
tions of the policies which govern their behavior.

Verifiability. By representing policies in an explicitly declarative
form instead of burying them in the implementation code, we can
better support important types of policy analysis. First—and this
is absolutely critical for security policies—we can externally vali-
date that the policies are sufficient for the application’s tasks, and
we can bring both automated theorem-provers and human exper-
tise to this task. Second, there are methods to ensure that program
behavior which follows the policy will also satisfy many of the
important properties of reactive systems: liveness, recurrence,
safety invariants, and so forth. Finally, with explicit policies gov-
erning different types of agent behavior, we can predict how poli-
cies may compose.

CYBERFORMING TERRASPACE
Tomorrow’s world will be filled with agents embedded every-
where in the places and things around us. Providing a pervasive
web of sensors and effectors, teams of such agents will function as
cognitive prostheses—computational systems that leverage and
extend human intellectual, perceptual, and collaborative capaci-
ties, just as the steam shovel was a sort of muscular prosthesis or
the eyeglass a sort of visual prosthesis [13]. Thus the focus of AI
research is destined to shift from Artificial Intelligence to Aug-
mented Intelligence [4; 18]. It is clear that terraforming cyber-
space is just the first step; the next step will be to cyberform ter-
raspace, giving agents permanent footholds in the material world.

While simple robotic assistants of various kinds today capture our
attention, the future surely holds much more interesting and amaz-
ing agent-powered devices than we can currently imagine. A key
requirement for such devices is for real-time cooperation with

people and with other autonomous systems. While these hetero-
geneous cooperating entities may operate at different levels of
sophistication and with dynamically varying degrees of autonomy,
they will require some common means of representing and appro-
priately participating in joint tasks. Just as important, developers
of such systems will need tools and methodologies to assure that
such systems will work together reliably, even when they are de-
signed independently.

One example that presages—albeit primitively—such develop-
ments is the Personal Satellite Assistant (PSA), a softball-sized
flying robot that is being designed to operate onboard spacecraft
in pressurized micro-gravity environments (figure 6) [15]. First
proposed and championed by Yuri Gawdiak of NASA Ames, the
PSA will incorporate environmental sensors for gas, temperature,
and fire detection, providing the ability for the PSA to monitor
spacecraft, payload and crew conditions. Video and audio inter-
faces and speech understanding capabilities will support for navi-
gation, remote monitoring, and video-conferencing. Ducted fans
will provide propulsion and batteries will provide portable power.
Most importantly, it is intended to work in close interaction with
groups of people and artificial agents, which poses daunting chal-
lenges to researchers and developers.

With funding and collaboration from NASA Ames, and RIACS,
we are investigating issues in human-robotic teamwork and ad-
justable autonomy for the PSA [7; 8]. Although we currently en-
vision the PSA as the most accessible and practical initial testbed
for our prototyping work in the design of collaborative robots, we
are confident that our results will generalize to future cooperative
autonomous systems of many other sorts. For instance, future
human missions to the Moon and to Mars will undoubtedly need
the increased capabilities for human-robot collaborations we envi-
sion. Astronauts will live, work, and perform laboratory experi-
ments in collaboration with robots not only inside, but also out-
side the habitat on planetary surfaces.

Our approach to design of cooperative autonomous systems re-
quires first and foremost a thorough understanding of the kinds of
interactive contexts in which humans and autonomous systems
will cooperate. With our colleagues at RIACS, we have begun to
investigate the use of Brahms [28] as an agent-based design
toolkit to model and simulate realistic work situations in space.
The agent-based simulation in Brahms will eventually become the
basis for the design of PSA functions for actual operations. On its
part, IHMC is enhancing the KAoS and NOMADS agent frame-
works to incorporate explicit general models of teamwork, mobil-
ity, and resource control appropriate for space operations scenar-
ios. We expect these models to be mostly represented in the form
of policies [7].
The power of general-purpose teamwork models in multi-agent
systems usually comes at a high price. Joint intention theory, for
example, is built on an extremely powerful logical framework that
includes explicit representation of mental attitudes like belief,
goal, intention, and so forth [10; 11; 33]. These attitudes are mod-
eled in the traditional way: as new modal operators in a quantified
modal logic. Hence, while the most general form of joint intention
theory is representationally very attractive, it is often computa-
tionally intractable. This tension between expressivity and com-
putability is not limited to teamwork theories; in fact, it is a hall-
mark of all mentalistic theories of agent behavior and speech-act
based agent communication. Thus, when designing agents that
include strong teamwork assumptions and powerful communica-
tion languages (as do the PSA and other robots), it is critically
important to reduce the power of these general models in a way

that is sensitive to the agent's domain and expected range of ac-
tion.

Our approach to building a model of teamwork seeks to incorpo-
rate the best of previous research on human-centered collaboration
and teamwork, while simultaneously grounding such research in
our own work practice study experience. In addition, we are as-
sessing the contributions of allied fields ranging from cognitive
function analysis [3], to studies of animal displays, the roles of
values and affect, the enablers of effective delegation in humans
[25].
By using the analysis and simulation capability in Brahms, we
will be able to incorporate models of the PSA work environment
and practices in our decisions about how to strategically weaken
general joint intention theory without compromising the PSA's
ability to perform in its environment. In this way, we will balance
empirical analysis, simulation, and top-down theoretical consid-
erations in arriving at a teamwork theory that will allow the PSA
to meet the scenario goals. Teams of KAoS-NOMADS-Brahms
agents will be formed, maintained, and disbanded through the
process of agent-to-agent communication using an appropriate
semantics. Agents representing various team members, from hu-
mans to autonomous systems to simple devices and sensors, will
assure coherence in the adoption and discharge of team commit-
ments and will encapsulate state information associated with each
entity. Agent conversation policies will be designed to assure
robust behavior and to keep computational overhead for team
maintenance to an absolute minimum [6; 17; 19].

Figure 6. NASA’s Personal Satellite Assistant or PSA (Courtesy
NASA Ames).

TERRAFORMING TERRASPACE
In discussing requirements for habitable agent environments, we
cannot forget that humans have corresponding needs. Terraspace,
in many respects, is as badly in need of (re)terraforming as cyber-
space. 4 To this end, IHMC is collaborating with the developers of

4 In an interesting twist, Jack Williamson, who invented the term

“terraforming” to describe an alien world altered for human

Seaside, Florida, a small, sophisticated Gulf Coast town that is the
birthplace of New Urbanism [22]. The New Urbanism movement
includes urban designers, environmentalists, transportation ex-
perts, social justice advocates, and others who are working to-
gether to change American land use from highway-oriented
sprawl. The movement proposes reviving and updating traditional
town-building principles to produce human-scaled settlements in
which numerous pathways connect a variety of buildings inter-
nally and to the surrounding landscape. IHMC and the Seaside
Institute are hosting a series of workshops, study groups, and visit-
ing scholar programs exploring the application of well-evolved
urban design principles to the newly burgeoning and chaotic
world of electronic space design.

Figure 7. Odessa Street in Seaside, Florida. Courtesy Steven
Brooke.

Increasingly, cyberspace is being perceived in spatial terms for
human users. We speak and think of visiting websites, for exam-
ple, and of the problems of getting lost while trying to navigate
through the tangle of hyperlinks, rather than of the packets of
information being trucked to our computers on the information
superhighway. In any case, very few people live and work on
superhighways. As virtual reality technologies are coupled with
high bandwidth connectivity, the perception of cyberspace as
space will become a reality. Cyberspace will be built to fit the
human sense of space.

As a new kind of space for human beings, cyberspace is now woe-
fully primitive. Most of our electronic built space is a rat’s nest of
bewildering pathways of indeterminate destination, much like
medieval Rome. The humanist Popes of the Renaissance used the
ideas of the citta ideale to produce connectivity and impart legibil-
ity to the layout of their city. In the process, they produced some
of the world’s most memorable, elegant, and comfortable streets
and squares, which continue to provide an environment for all
kinds of people engaged in all manner of activities.

Civilization begins when human beings find places to be, make
these places their homes, and then create ways to communicate
and work together, which depend on their chosen locations. Those
who are designing and building cyberspace might benefit from
“lessons learned” over thousands of years by those who have been

habitation in his 1942 novel “Seetee Ship,” has used the seem-
ingly paradoxical title “Terraforming Earth” as the name of his
latest work of science fiction [34]. The book describes the ef-
forts of scientists to bring life back to the earth after asteroids
trigger a new Ice Age.

engaged in designing humanity’s best physical environments.
Moreover, urban designers may yet have something to learn from
the architects of cyberspace.

Ultimately both humans and agents have much to gain through the
terraforming and cyberforming of the dual realms of atoms and
bits. People will feel more welcome and at home in both places.
Agents will be freed from their current role as short-lived visitors
on the wire to permanent colonists in real and virtual worlds
where we can feel comfortable with not knowing or caring exactly
where their programs are being physically hosted. They will truly
live among us and we will wonder how we ever lived without
them.

ACKNOWLEDGEMENTS
This is an updated and expanded version of an article that origi-
nally appeared in IEEE Intelligent Systems, July 2001, pp. 49-56.
The authors gratefully acknowledge the support of the DARPA
CoABS, Augmented Cognition, and Ultra*Log Programs, the
NASA Cross-Enterprise and Intelligent Systems Programs, and
the National Technology Alliance, Fujitsu Labs, and The Boeing
Company while preparing this paper. Thanks also to many other
colleagues who have assisted in this work, including Mark Adler,
David Allsopp, Alessandro Acquisti, Patrick Beautement, Todd
Carrico, Janet Cerniglia, Bill Clancey, Rob Cranfill, Grzegorz
Czajkowski, Chris Dellarocas, Greg Dorais, Mark Greaves, Jack
Hansen, Pat Hayes, Jim Hendler, Greg Hill, Heather Holmback,
Wayne Jansen, Martha Kahn, Mike Kerstetter, Mike Kirton, Mark
Klein, Gerald Knoll, Ora Lassila, Henry Lieberman, Mike Mahan,
Framk McCabe, Nicola Muscettola, Debbie Prescott, Anil Raj,
Phil Sage, Dylan Schmorrow, Kent Seamons, Maarten Sierhuis,
Austin Tate, Al Underbrink, Ron Van Hoof, Doyle Weishar, Alex
Wong, Tim Wright, and members of the DARPA CoABS Coali-
tion Operations Experiment (CoAX), the Java Agent Services
Expert Group (JSR 87) and the FIPA Abstract Architecture Work-
ing Group.

REFERENCES
[1] Allsopp, D., Beautement, P., Bradshaw, J. M., Durfee, E.,
Kirton, M., Knoblock, C., Suri, N., Tate, A., & Thompson, C.
(2002). Coalition Agents eXperiement (CoAX): Multi-agent co-
operation in an international coalition setting. A. Tate, J. Brad-
shaw, and M. Pechoucek (Eds.), Special issue of IEEE Intelligent
Systems.

[2] Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The seman-
tic web. Scientific American ,

[3] Boy, G. (1998). Cognitive Function Analysis., Stamford, CT:
Ablex Publishing.

[4] Bradshaw, J. M., Beautement, P., Kulkarni, S., Suri, N., &
Raj, A. (2002). Toward a deliberative and reactive agent architec-
ture for augmented cognition. DARPA Augmented Cognition Pro-
gram White Paper., Pensacola, FL: Institute for Human and Ma-
chine Cognition, University of West Florida.

[5] Bradshaw, J. M., Dutfield, S., Benoit, P., & Woolley, J. D.
(1997). KAoS: Toward an industrial-strength generic agent archi-
tecture. In J. M. Bradshaw (Ed.), Software Agents. (pp. 375-418).
Cambridge, MA: AAAI Press/The MIT Press.

[6] Bradshaw, J. M., Greaves, M., Holmback, H., Jansen, W.,
Karygiannis, T., Silverman, B., Suri, N., & Wong, A. (1999).
Agents for the masses: Is it possible to make development of so-
phisticated agents simple enough to be practical? IEEE Intelligent
Systems(March-April), 53-63.

[7] Bradshaw, J. M., Sierhuis, M., Feltovich, P., Acquisti, A.,
Jeffers, R., Prescott, D., Suri, N., Uszok, A., & Van Hoof, R.
(2002). What we can learn about human-agent teamwork from
practice. Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS 2002). Bologna, Italy,, Proceedings of the
AAMAS Workshop on Teamwork and Coalition Formation,

[8] Bradshaw, J. M., Sierhuis, M., Gawdiak, Y., Jeffers, R., Suri,
N., & Greaves, M. (2001). Adjustable autonomy and teamwork
for the Personal Satellite Assistant. Proceedings of the IJCAI-01
Workshop on Autonomy, Delegation, and Control: Interacting
with Autonomous Agents. Seattle, WA, USA,,,

[9] Bradshaw, J. M., Suri, N., Kahn, M., Sage, P., Weishar, D., &
Jeffers, R. (2001). Terraforming cyberspace: Toward a policy-
based grid infrastructure for secure, scalable, and robust execution
of Java-based multi-agent systems. Proceedings of the Second
International Workshop on Infrastructure for Agents, Mobile
Agent Systems, and Scalable Mobile Agents Systems at the Fifth
International Conference on Autonomous Agents (Agents-2001).
Montreal, Quebec, Canada,,,

[10] Cohen, P. R., & Levesque, H. J. (1991). Teamwork. Technote
504. Menlo Park, CA: SRI International, March.

[11] Cohen, P. R., Levesque, H. R., & Smith, I. (1997). On team
formation. In J. Hintikka & R. Tuomela (Ed.), Contemporary
Action Theory. Synthese.

[12] Damianou, N., Dulay, N., Lupu, E. C., & Sloman, M. S.
(2000). Ponder: A Language for Specifying Security and Man-
agement Policies for Distributed Systems, Version 2.3. Imperial
College of Science, Technology and Medicine, Department of
Computing, 20 October 2000.

[13] Ford, K. M., Glymour, C., & Hayes, P. (1997). Cognitive
prostheses. AI Magazine, 18(3), 104.

[14] Foster, I., & Kesselman, C. (Ed.). (1999). The Grid: Blue-
print for a New Computing Infrastructure. San Francisco, CA:
Morgan Kaufmann.

[15] Gawdiak, Y., Bradshaw, J. M., Williams, B., & Thomas, H.
(2000). R2D2 in a softball: The Personal Satellite Assistant. H.
Lieberman (Ed.), Proceedings of the ACM Conference on Intelli-
gent User Interfaces (IUI 2000), (pp. 125-128). New Orleans,
LA,, New York: ACM Press,

[16] Gershenfeld, N. A. (1999). When Things Start to Think., New
York: Henry Holt and Company.

[17] Greaves, M., Holmback, H., & Bradshaw, J. M. (2001).
Agent conversation policies. In J. M. Bradshaw (Ed.), Handbook
of Agent Technology. (pp. in preparation). Cambridge, MA: AAAI
Press/The MIT Press.

[18] Hamilton, S. (2001). Thinking outside the box at IHMC.
IEEE Computer, 61-71.

[19] Holmback, H., Greaves, M., & Bradshaw, J. M. (1999). A
pragmatic principle for agent communication. J. M. Bradshaw, O.
Etzioni, & J. Mueller (Ed.), Proceedings of Autonomous Agents
'99, (pp. 368-369). Seattle, WA,, New York: ACM Press,

[20] Jordan, M., & Atkinson, M. (1998). Orthogonal persistence
for Java—A mid-term report. Sun Microsystems Laboratories,

[21] Kahn, M., & Sage, P. (2000). DARPA Control of Agent-
Based Systems Grid Tutorial. J. M. Bradshaw (Ed.), PAAM 2000.
Manchester, England,,,

[22] Katz, P., & Scully, V., Jr. (1993). The New Urbanism: To-
ward an Architecture of Community., New York, NY: McGraw-
Hill.

[23] Knoll, G., Suri, N., & Bradshaw, J. M. (2001). Path-based
security for mobile agents. Proceedings of the First International
Workshop onthe Security of Mobile Multi-Agent Systems (SEMAS-
2001) at the Fifth International Conference on Autonomous
Agents (Agents 2001), (pp. 54-60). Montreal, CA,, New York:
ACM Press,

[24] Lupu, E. C., & Sloman, M. S. (1999). Conflicts in policy-
based distributed systems management. IEEE Transactions on
Software Engineering—Special Issue on Inconsistency Manage-
ment.

[25] Milewski, A. E., & Lewis, S. H. (1994). Design of intelligent
agent user interfaces: Delegation issues. AT&T Corporate Infor-
mation Technologies Services Advanced Technology Planning,
October 20.

[26] Mitrovich, T. R., Ford, K. M., & Suri, N. (2001). Transparent
redirection of network sockets. OOPSLA WorkshBp on Experi-
ences with Autonomous Mobile Objects and Agent-based Sys-
tems.,,,

[27] Seamons, K. E., Winslet, M., & Yu, T. (2001). Limiting the
disclosure of access control policies during automated trust nego-
tiation. Proceedings of the Network and Distributed Systems
Symposium.,,,

[28] Sierhuis, M. (2001) Brahms: A Multi-Agent Modeling and
Simulation Language for Work System Analysis and Design. Doc-
toral, University of Amsterdam.

[29] Smith, I. A., Cohen, P. R., Bradshaw, J. M., Greaves, M., &
Holmback, H. (1998). Designing conversation policies using joint
intention theory. Proceedings of the Third International Confer-
ence on Multi-Agent Systems (ICMAS-98), (pp. 269-276). Paris,
France,, Los Alamitos, CA: IEEE Computer Society,

[30] Suri, N., Bradshaw, J. M., Breedy, M. R., Groth, P. T., Hill,
G. A., & Jeffers, R. (2000). Strong Mobility and Fine-Grained
Resource Control in NOMADS. Proceedings of the 2nd Interna-
tional Symposium on Agents Systems and Applications and the 4th
International Symposium on Mobile Agents (ASA/MA 2000). Zu-
rich, Switzerland,, Berlin: Springer-Verlag,

[31] Suri, N., Bradshaw, J. M., Breedy, M. R., Groth, P. T., Hill,
G. A., Jeffers, R., Mitrovich, T. R., Pouliot, B. R., & Smith, D. S.
(2000). NOMADS: Toward an environment for strong and safe
agent mobility. Proceedings of Autonomous Agents 2000. Barce-
lona, Spain,, New York: ACM Press,

[32] Suri, N., Groth, P. T., & Bradshaw, J. M. (2001). While
You're Away: A system for load-balancing and resource sharing
based on mobile agents. R. Buyya, G. Mohay, & P. Roe (Ed.),
Proceedings of the First IEEE/ACM International Symposium on
Cluster Computing and the Grid, (pp. 470-473). Brisbane, Aus-
tralia,, Los Alamitos, CA: IEEE Computer Society,

[33] Tambe, M., Shen, W., Mataric, M., Pynadath, D. V., Gold-
berg, D., Modi, P. J., Qiu, Z., & Salemi, B. (1999). Teamwork in
cyberspace: Using TEAMCORE to make agents team-ready.
Proceedings of the AAAI Spring Symposium on Agents in Cyber-
space. Menlo Park, CA,, Menlo Park, CA: The AAAI Press,

[34] Williamson, J. (2001). Terraforming Earth., New York, NY:
Tor Books.

